马汉彬  研究员  

研究方向:

电子邮件:mahb@sibet.ac.cn

电       话:(0512) 69588081

通讯地址:苏州高新区科灵路88号

简       历:

马汉彬,中国科学院苏州生物医学工程技术研究所,研究员,中科院百人计划,博士生导师,国家海外高层次人才计划入选者。2014年博士毕业于英国剑桥大学电子工程系,后受牛顿基金会支持,留校继续博士后研究工作并产业孵化科技型公司一家。2018年回国加入苏州医工所。利用薄膜电子半导体技术开发有源数字微流控平台及配套科学仪器系统,实现在二维平面内对纳升级别液体微滴及单细胞样本的精准、并行可编程操控。近些年获得人社部“高层次留学人才资助”计划,团中央中国青年报“强国科学家”提名,苏州市“杰出青年岗位能手”等荣誉。主持及参与多项国家自然基金、科技部重点研发及省重点国际合作、企业横向委托及江苏省“双创人才”、“双创团队”人才项目,2024年起,担任西北工业大学客座研究员。目前研究领域包含薄膜半导体器件、有源像素阵列在生命科学领域的应用拓展及AI+芯片实验室自动化。在Science,Advanced Sciences,JACS Au,analytical chemistry,lab on a chip,biosensors & bioelectronics 等顶级期刊发表学术文章60余篇,在微电子流域顶级会议IEEE IEDM发表3篇,在微流控流域顶级会议MicroTas发表近10篇,发明专利申请67项,其中3项英国专利、8项中国发明专利获得授权。

Google scholar: https://scholar.google.com/citations?user=Gn9uDaYAAAAJ&hl=zh-CN

Researchgate: https://www.researchgate.net/profile/Hanbin-Ma

获奖及荣誉:

2023年,中青报强国青年科学家提名

2023年,人社部高层次留学人才回国资助

2021年,苏州市(杰出)青年岗位能手

2020年,江苏省双创人才

2019年,江苏省双创博士

社会任职:

研究方向:

基于AI工具辅助的、先进半导体制造工艺、薄膜电子技术的阵列式生物芯片、生物传感器系统开发。   

(1) 数字微流控芯片及平台

利用复杂物理场实现对于微量样本复杂操控的数字微流控技术,实现二维芯片上生物样本处理及实验反应。利用薄膜晶体管像素开关阵列,实现在大规模阵列上的高通量生物样本精准操控。

(2) AI+实验室自动化

随着微流控平台的不断发展,现有团队技术已实现对数千数字微滴在二维平面上的自由操控。如何利用不断革新的人工智能技术,完成全流程芯片上实验全流程的智能解决方案,成为了实验室自动化由机械臂和机器人主导的机械自动化,到由半导体芯片为核心的芯片自动化发展的核心要点。

更进一步,如何利用AI技术,统筹、协调机械自动化和芯片自动化两种不同的实验室自动化路径,规划并实施复杂的实验流程,并完成现有技术无法完成的挑战,是本团队深入思考并重点解决的技术难点。

(3) 阵列式电化学生物检测平台

通过类似平板显示像素的驱动电路,配合基于薄膜晶体管的放大器像素电路,有能力实现大面积、高通量的阵列式阻抗生物传感器的制备。

(4) 纳米-生物光子学

将微流控技术在液体样本高通量、并行、精准操控的优势应用于双光子、相位、时间分辨等生物成像和传感检测研究中。


承担项目情况:

1. 国家重点研发计划-前沿生物技术,基于光电微流控的自动化抗体药物细胞株筛选平台开发与应用研究2024.12-2027.11,课题承担2024YFC3406900

2.国家重点研发计划-基础科研条件与重大科学仪器设备研发,高通量微流控精密移液器2023.11-2026.12,项目承担 (2023YFF0721500)

3. 国家自然科学基金-青年基金,基于打印有机薄膜晶体管的电化学阻抗免疫传感器研究 (6170010048)

4. 吉林省科技厅重点研发项目,发生物电阻抗成像系统模型在胶质瘤放射治疗中的应用研究

5. 吉林省科技厅重点研发项目,面向快速现场病毒核酸检测的一体化分子诊断系统

6.江苏省政策引导类计划(重点国别国际合作),数字微流控体外检测芯片及设备的联合研发


代表论著:

五年内代表论著(五篇):

1. Z Guo, F Li, H Li, M Zhao, H Liu, H Wang, H Hu, R Fu, Y Lu, S Hu, H Xie, H Ma* and S Zhang*, Deep Learning-Assisted Label-Free Parallel Cell Sorting with Digital Microfluidics, Advanced Sciences, 12 (1),2570001

2. Z Yang, K Jin, Y Chen, Q Liu, H Chen, S Hu, Y Wang, Z Pan, F Feng, M Shi, H Xie*, H Ma*, and H Zhou*, "AM-DMF-SCP: Integrated single-cell proteomics analysis on an active matrix digital microfluidic chip", JACS Au, 4 (5), 1811–1823 (2024).

3. Z Jia, C Chang, S Hu, J Li, M Ge, W Dong* and H Ma*, “Artificial intelligence-enabled multipurpose smart detection in active-matrix electrowetting-on-dielectric digital microfluidics” Microsystems & Nanoengineering 10 (1), 139 (2024);

4. B Zhang, J Fu, M Du, K Jin, Q Huang, J Li, D Wang, S Hu, J Li, and H Ma*, "Polar coordinate active-matrix digital microfluidics for high-resolution concentration gradient generation", Lab on a Chip, 24 (8), 2193–2201 (2024).

5. S Hu, J Ye, S Shi, C Yang, K Jin, C Hu, D Wang, and H Ma*, "Large-Area Electronics-Enabled High-Resolution Digital Microfluidics for Parallel Single-Cell Manipulation", Analytical Chemistry (2023);

代表性会议论文

(IEDM2023) J Yu, S Jiang, D Wang, C Chang, Z Jia, M Du, S Shi, J Li, W Dong, H Ma* and A Nathan*, “Field programmable digital microfluidics chip for high-throughput droplet array manipulation” 2023 IEEE International Electron Devices Meeting

(IEDM 2021) C Jiang, C Tsangarides, X Cheng, L Ding, H Ma, and A Nathan, “High Stretchability Ultralow-Power All-Printed Thin Film Transistor Amplifier on Strip-Helix-Fiber”, 2021 IEEE International Electron Devices Meeting

(IEDM2020) H Ma*, S Shi, K Jin, D Wang, S Hu, Y Su, Y Zhang, J Li, Z Liu, C Jiang, L Feng, X Guo and A Nathan, “Large-area manufacturable active matrix digital microfluidics platform for high-throughput bio-sample handling”, 2020 IEEE International Electron Devices Meeting

microtas

(1) Siyi Hu, Chao Yang, Yuhan Jie, Haifei Yang, Yang Su and Hanbin Ma*All-in-One Digital Microfluidic System for Molecular Diagnosis Based on the Loop-Mediated Isothermal Amplification, 2020, MicroTAS (Online).

(2) Siyi Hu, Subao Shi, Jingmin Ye, Chuyu Chen, Dongping Wang and Hanbin Ma*, ACTIVE-MATRIX DIGITAL MICROFLUIDICS PLATFORM FOR SINGLE CELL GENERATION AND MANIPULATION, 2021, MicroTAS (Online).

(3) Siyi Hu, Qi Huang, Jie Yue, Kai Jin, Chenxuan Hu and Hanbin Ma*, ON-CHIP ELECTROPORATION IN EWOD DIGITAL MICROFLUIDICS, 2022, MicroTAS (Hangzhou, China).

(4) Chenxuan Hu, Siyi Hu, Qi Huang, and Hanbin Ma*,Combined Particle sorting and Droplet manipulation on Digital Microfluidic System by Dielectrophoresis and Electrowetting, 2022, MicroTAS (Hangzhou, China).

(5) Siyi Hu, Kai Jin, Chenxuan Hu, Dongping Wang, Mude Shi, Jiahao Li and Hanbin Ma*, Platform Based on Active-matrix Digital Microfluidics for High-throughput Single-cell Processing and Single-cell Proteomics, 2023, MicroTAS (Katowice, Poland)

(6) Siyi Hu, Jianle Huang, Jiahao Li, Mude Shi, Hanbin Ma*, HIGHLY EFFICIENT PHAGE DISPLAY METHOD BASED ON THEACTIVE-MATRIX DIGITAL MICROFLUIDICS TECHNOLOGY, 2024, MicroTAS (Montreal, Canada)

(7) Zongliang Guo, Fenggang Li, Rongxin Fu, Yao Lu,Siyi Hu, Hanbin Ma, Hang Li, Shuailong Zhang*, AI-DRIVEN DIGITAL MICROFLUIDICS FOR ENHANCED LABEL-FREECELL SORTING, 2024, MicroTAS (Montreal, Canada)

(8) Zhiqiang Jia, Wenfei Dong, Hanbin Ma*, ARTIFICIAL INTELLIGENCE IN LARGE SCALE ACTIVE-MATRIXDIGITAL MICROFLUIDICS, 2024, MicroTAS (Montreal, Canada)

(9) Kai Jin, Zhicheng Yang, Maolin Zhang, Siyi Hu,Hu Zhou, Hanbin Ma*, AM-DMF-SCP: INTEGRATED SINGLE-CELL PROTEOMICS ANALYSISON AN ACTIVE-MATRIX DIGITAL MICROFLUIDIC CHIP, 2024, MicroTAS (Montreal, Canada)

期刊论文

2024

[43] J Liu, R Fu, S Zhang, J Hou, H Ma, S Hu, H Li, Y Zhang, W Wang, B Qiao, B Zang, X Min, F Zhang, J Du, and S Yan, "Rapid and multi-target genotyping of Helicobacter pylori with digital microfluidics", Biosensors and Bioelectronics, 256, 116282 (2024).

[42] D Wang, K Jin, J Ji, C Hu, M Du, Y Belgaid, S Shi, J Li, S Hu, A Nathan, J Yu, and H Ma*, "Active-matrix digital microfluidics design for field programmable high-throughput digitalized liquid handling", iScience, 27 (5), 109324 (2024).

[41] Y Zeng, X Gan, Z Xu, X Hu, C Hu, H Ma, H Tu, B Chai, C Yang, S Hu, and Y Chai, "AIEgens-enhanced rapid sensitive immunofluorescent assay for SARS-CoV-2 with digital microfluidics", Analytica Chimica Acta, 1298, 342398 (2024).

[40] Z Yang, K Jin, Y Chen, Q Liu, H Chen, S Hu, Y Wang, Z Pan, F Feng, M Shi, H Xie, H Ma*, and H Zhou, "AM-DMF-SCP: Integrated single-cell proteomics analysis on an active matrix digital microfluidic chip", JACS Au, 4 (5), 1811–1823 (2024).

[39] J Ji, C Hu, X Pang, J Liang, Q Huang, S Hu, Q Mei, and H Ma*, "Open thermal control system for stable polymerase chain reaction on a digital microfluidic chip", ACS Omega, 9 (9), 10937-10944 (2024).

[38] B Zhang, J Fu, M Du, K Jin, Q Huang, J Li, D Wang, S Hu, J Li, and H Ma*, "Polar coordinate active-matrix digital microfluidics for high-resolution concentration gradient generation", Lab on a Chip, 24 (8), 2193–2201 (2024).

2023

[37] J Wu, M Zhang, J Huang, J Guan, C Hu, M Shi, S Hu, S Wang*, andH Ma*, "Enhanced absorbance detection system for online bacterial monitoring in digital microfluidics", Analyst 148 (19), 4659 (2023);

[36] C Yang, X Gan, Y Zeng, Z Xu, L Xu, C Hu,H Ma, B Chai, S Hu*, and Y Chai*, "Advanced design and applications of digital microfluidics in biomedical fields: An update of recent progress", Biosensors and Bioelectronics, 115723 (2023).

[35] C Hu, K Jin, and H Ma*, "A universal model for continuous “one-to-two” high-efficient droplet generation in digital microfluidics", Applied Physics Letters 122 (18) (2023);

[34] S Hu, J Ye, S Shi, C Yang, K Jin, C Hu, D Wang, and H Ma*, "Large-Area Electronics-Enabled High-Resolution Digital Microfluidics for Parallel Single-Cell Manipulation", Analytical Chemistry (2023);

[33] D Wang, S Wu, Q Huang, C Chang, L Xu, K Jin, S Hu, J Yu*, and H Ma*, "Active-Matrix Digital Microfluidics Design and Optimization for High-Throughput Droplets Manipulation", IEEE Journal of the Electron Devices Society PP, 1 (2023);

[32] Y Wei, D Wang, S Jiang, H Ma*, and J Yu*, "A High-voltage Serial-in-parallel-out Shift Register with Amorphous Silicon TFTs", IEEE Journal of the Electron Devices Society PP, 1 (2023).

2022

[31] D Wang, Z Liu, J Li, W Tang, Y Huang, J Yu, L Xu, Q Huang, Y Song, L Wang, H Jin, K Xi, L Feng, X Guo, A Nathan, and H Ma*, “Thin film transistor arrays for biological sensing systems”, Flexible and Printed Electronics 7 (2022);

[30] S Hu, Y Jie, K Jin, Y Zhang, T Guo, Q Huang, Q Mei, F Ma*, and H Ma*, “All-in-One Digital Microfluidics System for Molecular Diagnosis with Loop-Mediated Isothermal Amplification”, Biosensors 12, 324 (2022);

[29] C Hu, H Zhang, C Jiang, and H Ma*, “A geometrical model of pinch-off in digital microfluidics underpins “one-to-three” droplet generation”, Applied Physics Letters 120 (12), 121602 (2022);

[28] P Zhou, H He, H Ma, S Wang*, and S Hu*, “A Review of Optical Imaging Technologies for Microfluidics”, Micromachines 13, 274 (2022);

[27] X Zhou, L Lu, Y Liu, K Wang, Y Guo, H Ma, J Yu, A Nathan, and J Sin, “Potential of the Amorphous Oxide Semiconductors for Heterogeneous Power Integration Applications”, IEEE Transactions on Electron Devices PP, 1 (2022).

2021

[26] K Jin, C Hu, S Hu, C Hu, J Li, and H Ma*, “One-to-three” droplet-generation-based digital microfluidics enable a parallel on-chip chemiluminescence immunoassay, Lab on a Chip 21 (15), 2892 (2021).

2020

[25] L Xu, C Hu, Q Huang, K Jin, P Zhao, D Wang, W Hou, L Dong, S Hu, and H Ma*, “Trends and recent development of the microelectrode arrays (MEAs)”, Biosensors & bioelectronics, 112854 (2020).

[24] G Yao, H Ma*, S Sambandan, J Robertson and A Nathan, “Indium silicon oxide TFT fully photolithographically processed for circuit integration”, IEEE Journal of the Electron Devices Society,

[23] W Hou, S Hu, K-T Yong, J Zhang* and H Ma*, “Cigarette smoke-induced malignant transformation via STAT3 signalling in pulmonary epithelial cells in a lung-on-a-chip model”, Bio-Design and Manufacturing, 2020

[22] S Hu, B Zhang, S Zeng, L Liu, K-T Yong, H Ma* and Tang Y, “Microfluidic Chips Enabled One-step Synthetization of Biofunctionalized CuInS2/ZnS Quantum Dots”, Lab on a chip, 2020,20,3001

[21] C Zhang, Y Su, S Hu, K Jin, Y Jie, W Li, A Nathan and H Ma*. “An impedance sensing platform for monitoring heterogeneous connectivity and diagnostics in lab-on-a-chip systems”, ACS omega 5 (10), 5098-5104

[20] H Ma*, S Hu, Y Jie, K Jin and Y Su*. “A floating top-electrode electrowetting-on-dielectric system”, RSC Advances 10 (9), 4899-4906

[19] K Jin, P Zhao, W Fang, Y Zhai, S Hu, H Ma and J Li. “An Impedance Sensor in Detection of Immunoglobulin G with Interdigitated Electrodes on Flexible Substrate”. Applied Sciences 10 (11), 4012

2019

[18] K Jin, S Hu, Y Su, C Yang, J Li* and H Ma*.Disposable impedance-based immunosensor array with direct-laser writing platform”, Analytica chimica acta 1067, 48-55

[17] S Hu, Y Ren, Y Wang, J Li, J Qu, L Liu*, H Ma* and Y Tang. “Surface plasmon resonance enhancement of photoluminescence intensity and bioimaging application of gold nanorod@CdSe/ZnS quantum dots” Beistein Journal of Nanotechnology. 2019, 10, 22-31.

[16] C Jiang, H W Choi, X Cheng, H Ma, D G.Hasko and A Nathan*. “Printed subthreshold organic transistors operating at high gain and ultralow power” Science, 2019, 363(6248), pp 719-723.

[15] W Hou, S Hu, C Li, H Ma, Q Wang, G Meng, T Guo, J Zhang. “Cigarette smoke induced lung barrier dysfunction, EMT, and tissue remodeling: a possible link between COPD and lung cancer”. BioMed research international 2019

Ÿ 2018及更早

[14] C. Day, S. Sopstad, H. Ma, C. Jiang, A. Nathan, S.R. Elliott, F.E. Karet Frankl and T. Hutter*. “Impedance-based sensor for potassium ions” Analytica Chimica Acta, 2018, 1034, pp 39-45.

[13] Y Su, H Li, H Ma, H Wang, J Robertson, A Nathan. “Dye-Assisted Transformation of Cu2O Nanocrystals to Amorphous CuxO Nanoflakes for Enhanced Photocatalytic Performance”. ACS omega 3 (2), 1939-1945

[12] Z Guo, L Zhou, Y Tang, L Li, Z Zhang, H Yang, H Ma, A Nathan, D Zhao. “Surface/Interface Carrier-Transport Modulation for Constructing Photon-Alternative Ultraviolet Detectors Based on Self-Bending-Assembled ZnO Nanowires” ACS applied materials & interfaces 9 (36), 31042-31053

[11] C Jiang, H Ma, D G.Hasko, X Guo and A Nathan. “A Lewis-Acid Monopolar Gate Dielectric for All-Inkjet-Printed Highly Bias-Stress Stable Organic Transistors.” Advanced Electronic Materials, 2017,3,1700029

[10] Y Su, H Li, H Ma, J Robertson, A Nathan*. "Controlling surface termination and facet orientation in Cu2O nanoparticles for high photocatalytic activity: a combined experimental and density functional theory study." ACS Applied Materials & Interfaces, 2017, 9(9), pp 8100-8106.

[9] S Gao, X Wu, H Ma, J Robertson, A Nathan. “Ultrathin multifunctional graphene-PVDF layers for multidimensional touch interactivity for flexible displays” ACS applied materials & interfaces 9 (22), 18410-18416

[8] H Ma, Y Su, C Jiang and A Nathan*. "Inkjet-printed Ag electrodes on paper for high sensitivity impedance measurements." RSCAdvances 6 (87), 84547-84552.

[7] L Feng, C Jiang, H Ma, X Guo and A Nathan*. "All ink-jet printed low voltage organic field-effect transistors on flexible substrate." Organic Electronics 38, 186-192

[6] C Jiang, H Ma, D G. Hasko, and A Nathan*. "Influence of polarization on contact angle saturation during electrowetting." Applied Physics Letters 109, no. 21 (2016): 211601.

[5] C Tsangarides, H Ma and A Nathan*. "ZnO nanowire array growth on precisely controlled patterns of inkjet-printed zinc acetate at low-temperatures." Nanoscale 8 (22), 11760-11765

[4] Y Su, A Nathan, H Ma, H Wang. “Precise control of Cu 2 O nanostructures and LED-assisted photocatalysis” RSC advances 6 (81), 78181-78186

[3] H Ma, J Li, X Cheng and A Nathan*. "Heterogeneously integrated impedance measuring system with disposable thin-film electrodes." Sensors and Actuators B: Chemical 211 (2015): 77-82.

[2] H Ma, Y Su and A Nathan*. "Cell constant studies of bipolar and tetrapolar electrode systems for impedance measurement." Sensors and Actuators B: Chemical (2015): 1264-1270.

 [1] H Ma, R Wallbank, R Chaji, J Li, YSuzuki, C Jiggins and A Nathan*. "An impedance-based integrated biosensor for suspended DNA characterization." Scientific Report, Nature Publishing Group, 3:2730.