马汉彬  研究员  

研究方向:

电子邮件:mahb@sibet.ac.cn

电       话:(0512) 69588081

通讯地址:苏州高新区科灵路88号

 

简       历:

2014年博士毕业于英国剑桥大学电子工程系,受到艾萨克牛顿基金会支持,以牛顿研究员的身份在剑桥大学进行阻抗式低成本生物传感器及探测系统研发工作。2015年主导剑桥与中科学院国际合作项目,利用薄膜半导体工艺,通过数字微流控实现微量生物样本片上自动化操控。2018年加入中国科学院苏州生物医学工程技术研究所,所微纳加工平台负责人。同时产业孵化active-pixel基于薄膜电子阵列技术的有源数字微流控平台,并将其应用至纳升级别生物样本及单细胞片上操控等领域。先后发表包含SCIENCEanalytical chemistrylab on a chipbiosensors & bioelectronics 等顶级学术文章60余篇,微电子流域顶级会议IEEE IEDM及微流控流域顶级会议MicroTas数篇,发明专利申请50余项,其中3项英国专利、7项中国发明专利获得授权。

Google scholar: https://scholar.google.com/citations?user=Gn9uDaYAAAAJ&hl=zh-CN

Researchgate: https://www.researchgate.net/profile/Hanbin-Ma

获奖及荣誉:

2023年,中青报强国青年科学家提名

2023年,人社部高层次留学人才回国资助

2021年,苏州市(杰出)青年岗位能手

2020年,江苏省双创人才

2019年,江苏省双创博士

社会任职:

 

研究方向:

基于先进半导体制造工艺、薄膜电子技术的阵列式生物芯片、生物传感器系统开发。   

(1)    数字微流控芯片及平台

利用电润湿数字微流控技术,实现片上全流程生物反应。利用薄膜晶体管像素开关阵列,实现在大规模阵列上的高通量生物样本精准操控。

(2)    阵列式电化学生物检测平台

通过类似平板显示像素的驱动电路,配合基于薄膜晶体管的放大器像素电路,有能力实现大面积、高通量的阵列式阻抗生物传感器的制备。

3)基于深度强化学习及生成式AI的数字微流控样本路径规划

       随着数字微流控平台的不断发展,现团队已实现对数千数字微滴在二维平面上的自由操控。如何利用人工智能技术,实现现场可编程液滴群组路径规划,成为了整个系统向更加广阔应用场景拓展的瓶颈。

承担项目情况:

1.       国家重点研发计划,高通量微流控精密移液器 (2023YFF0721500)

2.       国家自然科学基金,基于打印有机薄膜晶体管的电化学阻抗免疫传感器研究 (6170010048)

3.       吉林省科技厅重点研发项目,发生物电阻抗成像系统模型在胶质瘤放射治疗中的应用研究

4.       吉林省科技厅重点研发项目,面向快速现场病毒核酸检测的一体化分子诊断系统

5.       江苏省政策引导类计划(重点国别国际合作),数字微流控体外检测芯片及设备的联合研发

代表论著:

--2023—

[37] C Yang, X Gan, Y Zeng, Z Xu, L Xu, C Hu, H Ma*, B Chai, S Hu, Y Chai, "Advanced design and applications of digital microfluidics in biomedical fields: An update of recent progress", Biosensors and Bioelectronics, 115723

[36] C Hu, K Jin, H Ma*, "A universal model for continuous “one-to-two” high-efficient droplet generation in digital microfluidics", Applied Physics Letters 122 (18)

[35] S Hu, J Ye, S Shi, C Yang, K Jin, C Hu, D Wang, H Ma*, "Large-area electronics-enabled high-resolution digital microfluidics for parallel single-cell manipulation", Analytical Chemistry 95 (17), 6905-6914

[34] J Wu, M Zhang, J Huang, J Guan, C Hu, M Shi, S Hu, S Wang, H Ma*, "Enhanced absorbance detection system for online bacterial monitoring in digital microfluidics", Analyst 148 (19), 4659-4667

--2022—

[33] X Zhou, L Lu, Y Liu, K Wang, Y Guo, H Ma, J Yu, A Nathan, JKO Sin, "Potential of the Amorphous Oxide Semiconductors for Heterogeneous Power Integration Applications", IEEE Transactions on Electron Devices 70 (1), 204-208

[32] C Jiang, X Cheng, H Ma*, A Nathan, "Flexible Electronics and Bioelectronics Devices", Springer Handbook of Semiconductor Devices, 959-1018

[31] S Hu, Y Jie, K Jin, Y Zhang, T Guo, Q Huang, Q Mei, F Ma, H Ma*, "All-in-one digital microfluidics system for molecular diagnosis with loop-mediated isothermal amplification", Biosensors 12 (5), 324

[30] C Hu, H Zhang, C Jiang, H Ma*, "A geometrical model of pinch-off in digital microfluidics underpins “one-to-three” droplet generation", Applied Physics Letters 120 (12)

[29] P Zhou, H He, H Ma, S Wang, S Hu, "A review of optical imaging technologies for microfluidics", Micromachines 13 (2), 274

 

--2021—

[28] C Jiang, CP Tsangarides, X Cheng, L Ding, H Ma*, A Nathan, "High Stretchability Ultralow-Power All-Printed Thin Film Transistor Amplifier on Strip-Helix-Fiber", 2021 IEEE International Electron Devices Meeting (IEDM), 16.4. 1-16.4. 4

[27] J Chen, N Arokia, H Ma*, "TFT Interfaces for High Sensory Resolution at Ultralow Power", Proceedings of the International Display Workshops, 916

[26] L Xu, C Hu, Q Huang, K Jin, P Zhao, D Wang, W Hou, L Dong, S Hu, H Ma*, "Trends and recent development of the microelectrode arrays (MEAs)", Biosensors and Bioelectronics 175, 112854

[25] K Jin, C Hu, S Hu, C Hu, J Li, H Ma*, "“One-to-three” droplet generation in digital microfluidics for parallel chemiluminescence immunoassays", Lab on a Chip 21 (15), 2892-2900

 

--2020--

[24] G Yao, H Ma*, S Sambandan, J Robertson and A Nathan, “Indium silicon oxide TFT fully photolithographically processed for circuit integration”, IEEE Journal of the Electron Devices Society, online

[23] W Hou, S Hu, K-T Yong, J Zhang* and H Ma*, “Cigarette smoke-induced malignant transformation via STAT3 signalling in pulmonary epithelial cells in a lung-on-a-chip model”, Bio-Design and Manufacturing, 2020, online

[22] S Hu, B Zhang, S Zeng, L Liu, K-T Yong, H Ma* and Tang Y, “Microfluidic Chips Enabled One-step Synthetization of Biofunctionalized CuInS2/ZnS Quantum Dots”, Lab on a chip, 2020, 20, 3001

[21] C Zhang, Y Su, S Hu, K Jin, Y Jie, W Li, A Nathan and H Ma*. “An impedance sensing platform for monitoring heterogeneous connectivity and diagnostics in lab-on-a-chip systems”, ACS omega 5 (10), 5098-5104

[20] H Ma*, S Hu, Y Jie, K Jin and Y Su*. “A floating top-electrode electrowetting-on-dielectric system”, RSC Advances 10 (9), 4899-4906

[19] K Jin, P Zhao, W Fang, Y Zhai, S Hu, H Ma* and J Li. “An Impedance Sensor in Detection of Immunoglobulin G with Interdigitated Electrodes on Flexible Substrate”. Applied Sciences 10 (11), 4012

 

--2019--

[18] K Jin, S Hu, Y Su, C Yang, J Li* and H Ma*. “Disposable impedance-based immunosensor array with direct-laser writing platform”, Analytica Chimica Acta 1067, 48-55

[17] S Hu, Y Ren, Y Wang, J Li, J Qu, L Liu*, H Ma* and Y Tang. “Surface plasmon resonance enhancement of photoluminescence intensity and bioimaging application of gold nanorod@CdSe/ZnS quantum dots” Beilstein Journal of Nanotechnology, 2019, 10, 22-31

[16] C Jiang, H W Choi, X Cheng, H Ma, D G.Hasko and A Nathan*. “Printed subthreshold organic transistors operating at high gain and ultralow power” Science, 2019, 363(6248), pp 719-723

[15] W Hou, S Hu, C Li, H Ma, Q Wang, G Meng, T Guo, J Zhang. “Cigarette smoke induced lung barrier dysfunction, EMT, and tissue remodeling: a possible link between COPD and lung cancer”. BioMed Research International 2019

 

--2019--

[14] C. Day, S. Sopstad, H. Ma, C. Jiang, A. Nathan, S.R. Elliott, F.E. Karet Frankl and T. Hutter*. “Impedance-based sensor for potassium ions” Analytica Chimica Acta, 2018, 1034, pp 39-45

[13] Y Su, H Li, H Ma, H Wang, J Robertson, A Nathan. “Dye-Assisted Transformation of Cu2O Nanocrystals to Amorphous CuxO Nanoflakes for Enhanced Photocatalytic Performance”. ACS omega 3 (2), 1939-1945

[12] Z Guo, L Zhou, Y Tang, L Li, Z Zhang, H Yang, H Ma, A Nathan, D Zhao. “Surface/Interface Carrier-Transport Modulation for Constructing Photon-Alternative Ultraviolet Detectors Based on Self-Bending-Assembled ZnO Nanowires” ACS Applied Materials & Interfaces 9 (36), 31042-31053

[11] C Jiang, H Ma, D G.Hasko, X Guo and A Nathan. “A Lewis-Acid Monopolar Gate Dielectric for All-Inkjet-Printed Highly Bias-Stress Stable Organic Transistors.” Advanced Electronic Materials, 2017,3,1700029

[10] Y Su, H Li, H Ma, J Robertson, A Nathan*. "Controlling surface termination and facet orientation in Cu2O nanoparticles for high photocatalytic activity: a combined experimental and density functional theory study." ACS Applied Materials & Interfaces, 2017, 9(9), pp 8100-8106

[9]   S Gao, X Wu, H Ma, J Robertson, A Nathan. “Ultrathin multifunctional graphene-PVDF layers for multidimensional touch interactivity for flexible displays” ACS Applied Materials & Interfaces 9 (22), 18410-18416

[8]   H Ma, Y Su, C Jiang and A Nathan*. "Inkjet-printed Ag electrodes on paper for high sensitivity impedance measurements." RSC Advances 6 (87), 84547-84552

[7]   L Feng, C Jiang, H Ma, X Guo and A Nathan*. "All ink-jet printed low voltage organic field-effect transistors on flexible substrate." Organic Electronics 38, 186-192

[6]   C Jiang, H Ma, D G. Hasko, and A Nathan*. "Influence of polarization on contact angle saturation during electrowetting." Applied Physics Letters 109, no. 21 (2016): 211601

[5]   C Tsangarides, H Ma and A Nathan*. "ZnO nanowire array growth on precisely controlled patterns of inkjet-printed zinc acetate at low-temperatures." Nanoscale 8 (22), 11760-11765

[4]   Y Su, A Nathan, H Ma, H Wang. “Precise control of Cu2O nanostructures and LED-assisted photocatalysis” RSC Advances 6 (81), 78181-78186

[3]   H Ma, J Li, X Cheng and A Nathan*. "Heterogeneously integrated impedance measuring system with disposable thin-film electrodes." Sensors and Actuators B: Chemical 211 (2015): 77-82

[2]   H Ma, Y Su and A Nathan*. "Cell constant studies of bipolar and tetrapolar electrode systems for impedance measurement." Sensors and Actuators B: Chemical (2015): 1264-1270

[1]   H Ma, R Wallbank, R Chaji, J Li, Y Suzuki, C Jiggins and A Nathan*. "An impedance-based integrated biosensor for suspended DNA characterization." Scientific Report, Nature Publishing Group, 3:2730

 

知识产权:

1.       Hanbin MaArokia NathanAn electrowetting on dielectric droplet manipulation device,发明专利,GB2559216

2.       Hanbin MaArokia NathanMethod of controlling a tessellated array of electrodes,发明专利,GB2560679

3.       马汉彬、 胡思怡、 苏阳,一种单细胞培养系统及单细胞培养方法,发明专利,ZL202010527030.3

4.       马汉彬、苏阳、冯林润、刘哲,一种驱动装置及驱动方法、电润湿系统,发明专利,ZL201910069178.4

5.       马汉彬、苏阳、阿洛基亚 内森,一种电润湿介电液滴致动装置及其制造方法,发明专利,ZL201811468606.2

6.       马汉彬、苏阳、阿洛基亚 内森,液滴操控,发明专利,ZL201880002445.X

7.       Hanbin MaYang SuArokia NathanDroplet actuation,发明专利,GB2578187

8.       马汉彬、施苏宝、靳凯、徐龙前、胡思怡、苏阳,一种微液滴生成方法和生成系统,发明专利,ZL202011552491.2

9.       施苏宝、马汉彬,一种微液滴的生成方法与微液滴的应用方法,发明专利,ZL202011549220.1

10.   靳凯、马汉彬,一种微液滴生成方法及系统,发明专利,ZL202011552418.5