胡思怡  副研究员  

研究方向:

电子邮件:husiyi@sibet.ac.cn

电       话:0512-69588081

通讯地址:苏州高新区科灵路88号

简       历:

胡思怡光学博士,副研究员,士生导师,国家重点研发计划首席科学家中国生物医学光子学专业委员会青年委员2015年博士毕业于长春理工大学/新加坡南洋理工大学联合培养光学专业,博士期间开展微流控技术在纳米生物光子学方面的应用研究,成果获得吉林省自然科学学术成果奖一等奖和吉林省科学技术奖三等奖。2015-2017年,任职长春理工大学,负责所在研究中心关于纳米材料在生物成像及传感检测方面的研究。2018年,加入中国科学院苏州生物医学工程技术研究所-医学检验室,主要从事数字微流控系统研发及其在单细胞多组学、纳米生物光子学和合成生物学领域的应用开发。Advanced Sciences, Analytical ChemistryLab on a chipBiosensors & Bioelectronics 等顶级期刊发表学术文章40余篇,微流控流域顶级会议MicroTAS和生物传感领域顶会Biosensors发表数篇,申请专利15项(授权7项)。


Google Scholar: https://scholar.google.ca/citations?user=8qX2GmkAAAAJ&hl=en

ResearchGate:  https://www.researchgate.net/profile/Siyi-Hu


获奖及荣誉:

社会任职:

中国光学学会生物医学光子学专业委员会青年委员。

研究方向:

1. 高通量数字微流控芯片及平台

  利用电润湿数字微流控技术,实现片上全流程生物反应。应用薄膜晶体管像素开关阵列,实现在大规模阵列

上的高通量、微量(nL-pL)、并行的生物样本(细胞、蛋白、核酸等)精准操控。

2. 数字微流控技术在合成生物学领域的应用研究 

  基于数字微流控平台进行DNA合成、DNA组装、无细胞表达、噬菌体展示等合成生物学领域相关的应用研

究。

3. 纳米-生物光子学

  将微流控技术在液体样本高通量、并行、精准操控的优势应用于双光子、相位、时间分辨、表面等离激元共

等生物成像和传感检测研究中。


承担项目情况:

1. 国家重点研发计划-基础科研条件与重大科学仪器设备研发,高通量微流控精密移液器, 2023.11-2026.12, 项目负责400万(2023YFF0721500)

2. 国家重点研发计划-前沿生物技术,基于光电微流控的自动化抗体药物细胞株筛选平台开发与应用研究,2024.12-2027.11课题横向参与1112024YFC3406900

3. 苏州市基础研究试点项目基于介电润湿原理的高通量单细胞精准操控方法研究2024.1.1-2026.12.31,项目负责,25万。

4. 企业横向,数字微流控技术在合成生物学领域的应用开发2025.1.1-2026.12.31,项目负责,80万。

5. 中国博士后科学基金面上,应用于肺癌早期诊断的复合型纳米结构生物传感器的研制,项目负责,8(2019M651959)

6. 吉林省科技厅重点研发项目,发生物电阻抗成像系统模型在胶质瘤放射治疗中的应用研究,核心骨干

7. 吉林省科技厅重点研发项目,面向快速现场病毒核酸检测的一体化分子诊断系统,核心骨干

8. 江苏省政策引导类计划(重点国别国际合作),数字微流控体外检测芯片及设备的联合研发,核心骨干


代表论著:

1. Zeng Y,Gan X, Xu Z, Hu X, Hu C, Ma H, Tu H, Chai B, Yang C, Hu S*, Chai Y*, AIEgens-enhanced rapid sensitive immunofluorescent assay for SARS-CoV-2 with digital microfluidics, Analytica Chimica Acta, 2024, 1298: 342398.

2. Chen Wang,Bobo Gu*, Shuhong Qi,Siyi Hu* and Yu Wang, Boosted photo-immunotherapy via near-infrared light excited phototherapy in tumor sites and photo-activation in sentinel lymph nodes, Nanoscale Advances, 2024,6, 2075-2087.

3. Z Guo, F Li, H Li, M Zhao, H Liu, H Wang, H Hu, R Fu, Y Lu, S Hu, H Xie, H Ma* and S Zhang*, Deep Learning-Assisted Label-Free Parallel Cell Sorting with Digital Microfluidics, Advanced Sciences, 2024, 12 (1),2570001

4. Z Yang, K Jin, Y Chen, Q Liu, H Chen, S Hu, Y Wang, Z Pan, F Feng, M Shi, H Xie*, H Ma*, and H Zhou*, AM-DMF-SCP: Integrated single-cell proteomics analysis on an active matrix digital microfluidic chip, JACS Au, 2024, 4 (5), 1811-1823

5. Z Jia, C Chang, S Hu, J Li, M Ge, W Dong* and H Ma*, Artificial intelligence-enabled multipurpose smart detection in active-matrix electrowetting-on-dielectric digital microfluidics, Microsystems & Nanoengineering,2024, 10 (1), 139

6. B Zhang, J Fu, M Du, K Jin, Q Huang, J Li, D Wang, S Hu, J Li, and H Ma*, Polar coordinate active-matrix digital microfluidics for high-resolution concentration gradient generation, Lab on a Chip, 2024, 24 (8), 2193-2201.

7. 闫超, 胡思怡*, 顾波波*,超透镜在显微成像中的进展:设计、加工及应用,激光与光电子学进展2023, 61 (2): 0211028-1(特邀综述)

8. Hu S, Ye J, Shi S, et al. Large-Area Electronics-Enabled High-Resolution Digital Microfluidics for Parallel Single-Cell Manipulation, Anal. Chem. 2023, 95, 6905-6914.

9. C Yang, X Gan, Y Zeng, Z Xu, L Xu, C Hu, H Ma, B Chai, S Hu*, Y Chai, Advanced design and applications of digital microfluidics in biomedical fields: An update of recent progress, Biosensors and Bioelectronics, 2023, 115723.

10. Hu S, Jie Y, Jin K, Zhang Y, Guo T, Huang Q, et al. All-in-One Digital Microfluidics System for Molecular Diagnosis with Loop-Mediated Isothermal Amplification. Biosensors. 2022;12(5).

11. Zhou P, He H, Ma H, Wang S, Hu S*. A Review of Optical Imaging Technologies for Microfluidics. Micromachines. 2022;13(2).

12. Jin K, Hu C, Hu S, Hu C, Li J, Ma H*. "One-to-three" droplet generation in digital microfluidics for parallel chemiluminescence immunoassays. Lab on a Chip. 2021;21(15):2892-900.

13. Xu L, Hu C, Huang Q, Jin K, Zhao P, Wang D, et al. Trends and recent development of the microelectrode arrays (MEAs). Biosensors & Bioelectronics. 2021;175.

14. Hu S, Zhang B, Zeng S, Liu L, Yong K-T, Ma H*, et al. Microfluidic chip enabled one-step synthesis of biofunctionalized CuInS2/ZnS quantum dots. Lab on a Chip. 2020;20(16):3001-10.

15. Hou W#, Hu S#, Yong K-t, Zhang J, Ma H*. Cigarette smoke-induced malignant transformation via STAT3 signalin pulmonary epithelial cells in a lung-on-a-chip model. Bio-Design and Manufacturing. 2020;3(4):383-95.

16. Zhang C, Su Y, Hu S, Jin K, Jie Y, Li W, et al. An Impedance Sensing Platform for Monitoring Heterogeneous Connectivity and Diagnostics in Lab-on-a-Chip Systems. Acs Omega. 2020;5(10):5098-104.

17. Ma H*, Hu S, Jie Y, Jin K, Su Y. A floating top-electrode electrowetting-on-dielectric system. Rsc Advances. 2020;10(9):4899-906.

18. Jin K, Hu S, Su Y, Yang C, Li J, Ma H*. Disposable impedance-based immunosensor array with direct-laser writing platform. Analytica Chimica Acta. 2019;1067:48-55.

19. Lin Z, Li J, Feng K, Wang Y, Chu X, Hu S. Morphology Control and Optical Properties of CdSe Nanorods by Surface Ligands. Technical Physics Letters. 2019;45(8):814-9.

20. Ren S, Ren Y, Hu S, Zhao Y, Shen B, Hong L, et al. Four-Photon Absorption Properties of Mn-Doped ZnSe Quantum Dots. Ieee Photonics Journal. 2019;11(2).

21. Hu S, Ren Y, Wang Y, Li J, Qu J, Liu L*, et al. Surface plasmon resonance enhancement of photoluminescence intensity and bioimaging application of gold nanorod@CdSe/ZnS quantum dots. Beilstein Journal of Nanotechnology. 2019, 10:22-31.

22. Hou W#, Hu S#, Li C, Ma H, Wang Q, Meng G, et al. Cigarette Smoke Induced Lung Barrier Dysfunction, EMT, and Tissue Remodeling: A Possible Link between COPD and Lung Cancer. Biomed Research International. 2019.

23. Hou W#, Hu S#, Su Z, Wang Q, Meng G, Guo T, et al. Myricetin attenuates LPS-induced inflammation in RAW 264.7 macrophages and mouse models. Future Medicinal Chemistry. 2018;10(19):2253-64.

24. Liu Y#, Hu S#, Feng Y, Zou P, Wang Y, Qin P, et al. Preparation of chitosan-Epigallocatechin-3-O-gallate nanoparticles and their inhibitory effect on the growth of breast cancer cells. Journal of Innovative Optical Health Sciences. 2018;11(4).

25.  Liu L*, Hu S, Wang Y, Yang S, Qu J. Optimizing the Synthesis of Core/shell Structure Au@Cu2S Nanocrystals as Contrast-enhanced for Bioimaging Detection. Scientific Reports. 2018;8.

26. Ren S, Liu L*, Li J, Hu S, Ren Y, Wang Y, et al. Advances in the local field enhancement at nanoscale. Chinese Optics. 2018;11(1):31-46.

27. Xiu J, Hu S, Li J, Ren S, Liu L*. Construction and application of FRET biological probe based on near infrared InP/ZnS quantum dots. Chinese Optics. 2018;11(1):74-82.

28. Liang Y, Liu L, Hu S, Zou P, Wang Y, Liu Y, et al. Characterizing physical properties and in vivo OCT imaging study of Cu-Sn-S nanocrystals. Aip Advances. 2017;7(1).

29. Feng Y, Liu L, Hu S, Ren Y, Liu Y, Xiu J, et al. Four-photon-excited fluorescence resonance energy transfer in an aqueous system from ZnSe: Mn/ZnS quantum dots to hypocrellin A. Optics Express. 2016;24(17):19627-37.

30. Feng Y, Liu L, Hu S, Zou P, Zhang J, Huang C, et al. Efficient fluorescence energy transfer system between fluorescein isothiocyanate and CdTe quantum dots for the detection of silver ions. Luminescence. 2016;31(2):356-63.

31. Qin P, Ren Y, Liu L, Hu S, Feng Y, Liu Y, et al. Development of plasmon-resonance of metal nanoparticles enhanced harmonic generation in nonlinear medium. Chinese Optics. 2016;9(2):213-25.

32. Wang Y, Liu L, Wang Q, Hu S, Zou P, Shi J, et al. Optimization of the aqueous synthesis of Cu2S quantum dots with different surface ligands. Nanotechnology. 2016;27(1).

33. Zeng S, Hu S, Xia J, Anderson T, Dinh X-Q, Meng X-M, et al. Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sensors and Actuators B-Chemical. 2015, 207:801-10.

34. Yin F, Yang C, Wang Q, Zeng S, Hu R, Lin G, Hu S et al. A Light-Driven Therapy of Pancreatic Adenocarcinoma Using Gold Nanorods-Based Nanocarriers for Co-Delivery of Doxorubicin and siRNA. Theranostics. 2015;5(8):818-33.

35. Zhang B, Wang Y, Yang C, Hu S, Gao Y, Zhang Y, et al. The composition effect on the optical properties of aqueous synthesized Cu-In-S and Zn-Cu-In-S quantum dot nanocrystals. Physical Chemistry Chemical Physics. 2015;17(38):25133-41.

36. Hu S, Zeng S, Zhang B, Yang C, Song P, Danny TJH, et al. Preparation of biofunctionalized quantum dots using microfluidic chips for bioimaging. Analyst. 2014;139(18):4681-90.

37. Liu L*, Wang Y, Hu S, Ren Y, Huang C. Second harmonic generation from direct band gap quantum dots pumped by femtosecond laser pulses. Journal of Applied Physics. 2014;115(7).

38. Wang Y, Liu L-W, Hu S-Y, Li Q-Y, Sun Z-H, Miao X-H, et al. Simulation study based on the COMSOL Mutiphysics to the surface plasmon resonance of Cu2S quantum dots. Acta Physica Sinica. 2013;62(19).